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[1] Effects from turbulence-induced fluctuations in water
vapor saturation on cloud droplet growth are examined
using a Brownian diffusion model. The model predicts
diffusive broadening of the droplet size distribution,
tempered by enhanced evaporation-induced drift of
droplets to smaller size from vapor depletion, and
approach to a stationary condition (Weibull distribution)
determined by the balance between size-space diffusion and
drift. Monte Carlo simulations of the approach to the
stationary limit and of the distribution itself are presented
and compared favorably with observation. A key
turbulence parameter required by the kinetic potential
theory of drizzle formation is estimated using the new
results. Citation: McGraw, R., and Y. Liu (2006), Brownian

drift-diffusion model for evolution of droplet size distributions in

turbulent clouds, Geophys. Res. Lett., 33, L03802, doi:10.1029/

2005GL023545.

1. Introduction

[2] Uncertainty in the physical processes governing
clouds and precipitation limits both regional weather fore-
cast accuracy and the ability to predict climate using
computer models [Houghton et al., 2001]. A large compo-
nent of uncertainty is associated with the coupling between
cloud turbulence and microphysical processes over a wide
range of spatial/temporal scales and droplet size [Shaw,
2003]. Current efforts aim at reducing uncertainty through
development of more robust parameterizations for clouds
and precipitation that are microphysically based yet com-
putationally suitable for use in regional to global scale
models [Rotstayn and Liu, 2005]. Recent progress in
parameterization of clouds and precipitation [Liu and
Daum, 2000, 2004; Liu et al., 2004, 2005], indirect aerosol
effects [Liu and Daum, 2002; Rotstayn and Liu, 2003;
Peng and Lohmann, 2003], and rain initiation theory
[McGraw and Liu, 2003, 2004] reinforces the need for
better understanding of the spectral shape of the droplet
size distribution.
[3] Although significant progress has been made and a

number of models put forth (e.g., stochastic condensation,
entrainment and mixing, and systems theory), details of
the underlying processes that shape cloud droplet size
distributions remain poorly understood [Baker et al.,
1980; Cooper, 1989; Srivastava, 1989; Khvorostyanov
and Curry, 1999a, 1999b; Liu et al., 2002; Shaw, 2003].
Observed droplet size distributions are generally much
broader than those predicted by the classical uniform

model. Furthermore, few studies/models yield analytical
forms for the size distribution that agree well with obser-
vations, thus highlighting the need for development of
simple microphysics parameterizations [Liu and Daum,
2004].
[4] Models of stochastic condensation have usually been

of the mean field type. In these a parcel of droplets,
estimated on the basis of Kolmogorov scaling to be several
meters in extent [Shaw, 2003], is uniformly subject to a low-
frequency fluctuating saturation tied to the vertical updraft
velocity. However, it has been shown that this uniformity
places a severe restriction on the degree to which turbulent
fluctuations can lead to broadening of the size distribution
[Pruppacher and Klett, 1997].
[5] Treating fluctuation in the saturation ratio is of

itself a long standing problem in cloud physics. A
simulation-based approach described by Kulmala and
co-workers [Kulmala et al., 1997] captures fluctuations
on the smaller spatial scales by sampling the condensa-
tion/evaporation trajectories of individual droplets each
allowed to experience a different fluctuation history, thus
providing a statistical sampling of the droplet distribu-
tion. The droplet growth trajectories are assumed to be
driven by turbulence fluctuations in vapor saturation.
However, effects from vapor depletion (e.g., on slowing
of droplet growth and approach to a stationary size
distribution) were not included. Here we present a simple
model for the effects of turbulence fluctuations based on
applying the Langevin and Fokker-Planck equations to
the study of cloud droplet size distributions. The model,
with vapor depletion included, yields analytic droplet size
distributions of the Weibull form in good agreement with
observation.

2. Turbulent Condensation and Evaporation:
Diffusive Growth of Cloud Droplets

[6] Turbulence causes fluctuations in water vapor satura-
tion and, consequently, in the rate of droplet growth. Such
fluctuations play an essential role in broadening of the cloud
droplet size distribution and can be modeled either by
Monte Carlo simulation [Kulmala et al., 1997] or analyti-
cally, as described below, in terms of a Fokker-Planck
equation describing the drift and diffusion of droplets along
a coordinate of droplet size.
[7] Cloud droplet growth/evaporation takes place in the

continuum regime for which the rate is:

dr2

dt
¼ k Tð Þ S � 1ð Þ ¼ k Tð Þ Sh i � 1ð Þ þ k Tð Þ S tð Þ � Sh ið Þ ð1Þ
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where r is droplet radius, and k(T) is a temperature and
pressure dependent rate coefficient (to simplify notation
we suppress the weaker pressure dependence) that includes
coupled heat and mass transfer during growth/evaporation
of the drop [Pruppacher and Klett, 1997]. S is the
saturation ratio, defined as the ratio of the vapor pressure
of the interstitial cloud air to the equilibrium vapor
pressure of the drop. We assume that nearby droplets
within a parcel are subject to the same value of S(t) due to
rapid diffusion of water vapor among the droplets. For
diffusive equilibration times of 10s � g

�1 (see below)
vapor concentrations will be uniform over distances of
order 1 cm [Clement, 2003] while droplets that are further
apart experience different fluctuation histories. The second
equality of equation (1) allows for the possibility that the
average parcel saturation ratio hSi may be other than unity
as a consequence of adiabatic cooling or vapor depletion
(see below). We assume fluctuations in S characterized by
finite variance sS

2,

S � Sh ið Þ2
D E

¼ s2S ; ð2aÞ

with exponential decay of correlation over timescale g
�1,

S tð Þ � Sh ið Þ S t þ Dð Þ � Sh ið Þh i ¼ S tð ÞS t þ Dð ih � Sh i2

¼ S 0ð ÞS Dð Þh i � Sh i2

¼ s2S exp �gDð Þ ð2bÞ

This agrees with the model of Kulmala and co-workers
[Kulmala et al., 1997], however it is significant that we
will not require the fluctuations in S to be gaussian. Thus
the present analysis can apply even in the face of large
non-gaussian fluctuations in S from intermittency – a well
known property of cloud turbulence [Shaw, 2003].
Estimates for sS (on the order of 1%) and for the
correlation time, g

�1 (from several seconds to tens of
seconds) are available [Kulmala et al., 1997]. These short
correlation times suggest that fluctuations in S are strongly
damped over the time scale, t, estimated below, of
significant change in the droplet size distribution. Finally it
is assumed (c.f. the second equality of equation (2b)) that
the fluctuations are stationary in the sense that their
statistical properties depend only on the time difference, D.
[8] The preceding suggests an analogy to Brownian

particle motion with coordinate z 	 r2 and equations (1)
and (2a) (2b) giving the instantaneous velocity, v = dz/dt.
The latter has two components: the fluctuation term in
equation (1), containing S(t) and giving rise to diffusion
and, as we will show that hSi < 1, a depletion term,
proportional to hSi � 1, giving rise to drift. The full
problem, including both diffusion and drift, is analogous
to the well-studied model of Brownian motion in a field of
force, allowing one to write down many key results imme-
diately rather than having to repeat in detail derivations
available in standard texts [e.g., Serra et al., 1986;
Gardiner, 1985]. Consider first the random growth compo-
nent. In the strongly damped regime (g�1 
 t) this causes
droplets to diffuse along the z coordinate with diffusion
coefficient given by the product of the variance of the

growth velocity fluctuations, k2(T)sS
2, and correlation time

[Serra et al., 1986]:

DZ ¼ k2 Tð Þs2S
g

: ð3Þ

3. Vapor Depletion and the Stationary Cloud
Droplet Distribution

[9] Diffusion of droplet size is checked by requirements
that the droplet radius be positive and total water (liquid
plus vapor) be conserved; droplets cannot grow without
vapor depletion, which will be represented here in a mean
field sense by assigning an averaged saturation hSi to the
cloud parcel under consideration. This average is expected
to change slowly with reference to the correlation time
scale g

�1 as the distribution changes (section 4), and
approach an asymptotic value under stationary cloud
conditions, which can be determined self-consistently by
the methods now described.
[10] For hSi 6¼ 1 the first term on the right hand side of

equation (1) gives a deterministic drift in droplet size with
velocity:

vdepl ¼
dr2

dt

� �
depl

¼ k Tð Þ Sh i � 1ð Þ: ð4Þ

Just as in the case of Brownian motion, the combination of
diffusion and drift is described by a Fokker-Planck (FP)
equation [Serra et al., 1986]. In present notation:

@f

@t
¼ DZ

@2f

@z2
� vdepl

@f

@z
¼ k2 Tð Þs2S

g

@2f

@z2
� vdepl

@f

@z
: ð5Þ

(A similar FP equation, but of widely different scale, has
been used in nucleation theory to describe the drift and
diffusion of molecular clusters along the coordinate of
cluster size [Lifshitz and Pitaevskii, 1981]). The stationary
condition (@f/@t = 0) is determined by the balance
between diffusion, which tends to broaden the distribu-
tion, and increase liquid water content, and drift, which
tends to narrow the distribution, and decrease liquid water
content, by reducing droplets to smaller size (vdepl must
be negative for a stationary distribution). Equation (5)
yields a Boltzmann distribution in z as its stationary
solution:

f1 zð Þ ¼ ND

vdepl
�� ��
DZ

exp �
vdepl
�� ��
DZ

z

� �
; ð6Þ

where jvdeplj = �vdepl is the magnitude of vdepl, normal-
ization is to the droplet number concentration ND, and the
subscript on f refers to the stationary condition. The
liquid water fraction (cm3 cloud liquid water/cm3 air) is
obtained as the 3/2 moment of f(z):

L ¼ 4p
3

Z 1

0

z3=2f zð Þdz: ð7Þ
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Substitution of f1(z) for specified liquid water content
yields the stationary value of vdepl:

vdepl ¼ �p
ND

L

� �2=3

DZ ¼ �p
ND

L

� �2=3
k2 Tð Þs2S

g
: ð8Þ

Reflective of vapor depletion, the theory predicts a
uniform shift in droplet averaged saturation to values
below unity. From equations (4) and (8):

Sh i1¼ 1� p
ND

L

� �2=3
k Tð Þs2S

g
; ð9Þ

and the stationary average saturation can thus be
determined from the parameter estimates for sS and g

provided in section 5. In the absence of fluctuations
(sS

2 = 0) water vapor is in equilibrium with the droplets
and S = 1.
[11] Transforming equation (6) from z to droplet radius

gives the Weibull distribution:

f1 rð Þ ¼ 2pND

ND

L

� �2=3

r exp �p
ND

L

� �2=3

r2

" #
; ð10Þ

which is a good representation of typically observed cloud
droplet size distributions [Costa et al., 2000; Liu et al.,
2002] (see Figure 1).

4. Monte Carlo Simulation

[12] For simulation we replace equation (5) with the
equivalent Langevin equation:

dz ¼ vdepldt þ sZdX ð11Þ

where sZ
2 = 2DZ and dX = f

ffiffiffiffi
dt

p
. f is a dimensionless

random variable drawn from a standardized normal
distribution with zero mean and unit variance, p(f) =
(2p)�1/2 exp(�f2/2). With these definitions, hdXi = 0 and
hdX2i = dt. Equivalence of equations (5) and (11) is
demonstrated in standard texts on stochastic processes [e.g.,
Gardiner, 1985]. The drift-diffusion processes they describe
are frequently encountered and well suited to simulation
using Monte Carlo methods. Simulations are carried out
here for 100-drop samples of growth/evaporation trajec-
tories based on equation (11). Droplets interact through the
vapor depletion effect, but are otherwise independent as
they are assumed far enough apart to experience different
fluctuation histories. At each time step the drift velocity is
adjusted so as to preserve liquid water content close to its
specified value L(t). Generally, e.g., with a parcel under-
going adiabatic cooling, L will be a function of time and
ND will change with the activation to new droplets or
droplet loss. To illustrate the new methods we here assume
the simplest case of fixed values for L and ND specified by
the initial condition. Time is expressed in units of the
distribution relaxation time mentioned above, t = z0

2/(2DZ),
where z0 = (3/4p)2/3(L/ND)

2/3 is the average radius squared
of the droplets, and radius in units of r0 =

ffiffiffiffi
z0

p
. Scaled

results are thus independent of L, ND and DZ. The model
time step is set at 0.001t(d~t = 0.001) and simulations
carried out to t = 5t(~t = 5). Positive values for the size
coordinate are assured by applying a reflective boundary
condition at the origin.
[13] Figure 1 shows evolution of the relative dispersion, e,

defined as the square root of the variance of the droplet radial
distribution divided by its mean, and effective radius ratio, b,
defined as the ratio of the third to second radial moments
divided by the cube root of the third moment [Liu et al.,
2002]. The color points show the values of e(~tk) and b(~tk) at
each successive time step,~tk = 0.001k, over the course of the
simulation. The initial distribution is taken to be monodis-
perse (e(0) = 0), broadening with time due to the turbulence
fluctuations in saturation and growth rates, maintaining
constant L and ND. Note that the broadening seen here is
counter to the usual tendency of condensation growth at
fixed (non-fluctuating) saturation to narrow size distribu-
tions over time [McGraw, 1997]. Broadening is effectively
complete by~t = 1–2 with slower approach to the asymptotic
values, e1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=p� 1

p
= 0.5227. . ., b1 = (9p/2)1/3/2 =

Figure 1. Color points, relative dispersion, e, and effective
radius ratio, b, for an evolving 100-drop sample taken at
reduced time increments of 0.001 (5000 samples total) as a
function of reduced sample time (see legend). Results are
shown for evolution from an initially monodisperse size
distribution (red) to the stationary distribution (purple).
Fluctuations are due to the stochastic nature of the model
and limited sample size. Open circles, results from
measurements of droplet size distributions in marine and
continental clouds [see Liu et al., 2002]. Solid curve,
analytic results for family of Weibull distributions. Dashed
line segment intersection, (e1,b1) for the stationary
distribution from the present theory (equation (10)).

Figure 2. Cumulative radial distribution versus scaled
drop radius from equation (10) (solid curve) and compar-
ison with results from four 100-drop Monte-Carlo simula-
tions (400 points total) at different times near the stationary
limit (purple point region of Figure 1).
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1.20899. . ., marked by intersection of the dashed line seg-
ments in Figure 1, as predicted from the radial moments of
the stationary distribution, equation (10). Figure 2 shows the
cumulative radial distribution (normalized to unity) for the
Weibull distribution (equation (10)) and comparison with
results combining four 100-drop Monte Carlo simulations at
different times near the stationary limit.

5. Implications for the Study of Clouds and
Precipitation

[14] The simple Brownian drift-diffusion model, using
only the continuum growth law (equation (1)) and a
reasonable model for fluctuations in S (equations (2a) and
(2b)), has been found to yield a Weibull distribution of
cloud droplet size in good agreement with observations.
Nevertheless the model does not reproduce the broader
measured droplet spectra seen in Figure 1. This may be a
limitation of using fixed values for L/ND in the simulations
rather than averaging over a range of values for this
parameter as likely to be found in turbulent clouds. A wider
family of distributions can be obtained by allowing for
drift/diffusion coefficients that are functions of droplet
size. For example, the Kelvin effect, not included here,
gives a small additional, size dependent contribution to the
drift to smaller droplet size. Alternatively, empirical size
distributions can be used and equation (5) inverted to
obtain the drift/diffusion rates. Extensions of the method to
allow for size-dependent drift/diffusion rates and variable
liquid water fraction will be described elsewhere.
[15] The present analysis provides a key turbulence

parameter used in the kinetic potential (KP) theory of
drizzle formation [McGraw and Liu, 2003, 2004]. This
is the quantity t1%, defined as the time required for
diffusion along the growth coordinate to change the cloud
droplet size 1% from 10 to 10.1 micron radius. This can
now be expressed in terms of the diffusion constant: t1% =
(Dz)2/(2DZ), where Dz = 10.12–10.02 = 2.01 mm2 and the
units of DZ are mm

4 s�1. We estimate DZ from equation (3):
Using k(10�C) = 167.8 mm2 s�1, from equation (13.28) and
the parameters given in Table 13.1 of Pruppacher and Klett
[1997], saturation variance sS = 0.01 and correlation time
g
�1 = 7s, both from Kulmala et al. [1997], yields DZ =

20.2 mm4 s�1 and t1% = 0.1s. This is in the range of
previous very rough estimates for this parameter and
happens to be a condition for which detailed calculations
of the drizzle barrier and drizzle rate have been presented
[McGraw and Liu, 2003, 2004]. For a typical mean
droplet radius r0 = 10 mm (z0 = 100 mm2) we obtain the
estimate t = z0

2/(2DZ) � 4 min for the distribution
relaxation time, thereby justifying the strongly damped
condition (g�1 
 t) used in derivation of the Fokker-
Planck and equivalent Langevin equations. In conclusion,
the new theory provides both a mechanism for shaping the
cloud droplet distribution and foundation for the similar
drift-diffusion processes that underlie the KP theory of
drizzle initiation.
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